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E C O L O G Y

Process-explicit models reveal the structure 
and dynamics of biodiversity patterns
July A. Pilowsky1,2*, Robert K. Colwell2,3,4,5, Carsten Rahbek2,6,7,8, Damien A. Fordham1,2,6*

With ever-growing data availability and computational power at our disposal, we now have the capacity to use 
process-explicit models more widely to reveal the ecological and evolutionary mechanisms responsible for spa-
tiotemporal patterns of biodiversity. Most research questions focused on the distribution of diversity cannot be 
answered experimentally, because many important environmental drivers and biological constraints operate at 
large spatiotemporal scales. However, we can encode proposed mechanisms into models, observe the patterns 
they produce in virtual environments, and validate these patterns against real-world data or theoretical expectations. 
This approach can advance understanding of generalizable mechanisms responsible for the distributions of 
organisms, communities, and ecosystems in space and time, advancing basic and applied science. We review recent 
developments in process-explicit models and how they have improved knowledge of the distribution and dynamics 
of life on Earth, enabling biodiversity to be better understood and managed through a deeper recognition of the 
processes that shape genetic, species, and ecosystem diversity.

INTRODUCTION
The patterns of biodiversity we observe at different temporal and 
spatial scales result from the key evolutionary and ecological processes 
of speciation, ecological interaction, adaptation, movement, and ex-
tinction, acting separately or in concert (1). These processes can be 
stochastic or forced by natural drivers of environmental change 
(e.g., plate tectonics and paleoclimate change) or by human drivers, 
such as invasive species, land use, pollution, and harvesting (2). 
However, the interplay among these processes and their drivers is 
complex (3), and different sets of circumstances can produce simi-
lar patterns. This ambiguity has made it difficult to discern which 
ecological and evolutionary processes and drivers have shaped 
current-day patterns of biodiversity based on empirical data alone 
(4). Fortunately, key advances in process-explicit models over the 
past 50 years are now enabling the processes and drivers responsible 
for contemporary patterns of biodiversity to be disentangled in space 
and time. Here, we show how these advances in biodiversity model-
ing are revealing the generalizable mechanisms responsible for the 
distributions, abundances, and diversity of life on Earth and how 
they are strengthening basic and applied science, resulting in im-
proved guidelines for the management of nature.

Process-explicit models in ecology and evolution represent the 
dynamics of a biological system as explicit functions of the events 
that drive change in that system (5). By causally linking current patterns 
to the past events that produced them (Fig. 1), process-explicit 
models help achieve a deeper understanding of the chain of causality 
leading to current-day spatial patterns of biodiversity, including 
human diversity (6). These models allow contested ecological and 

evolutionary theories to be assessed, enabling biodiversity to be 
understood and managed more effectively through a deeper recog-
nition of the processes of genetic-, species-, and ecosystem-level 
endangerment and collapse (7).

Models that are process-explicit provide platforms for directly 
integrating ecological and evolutionary theory into conservation 
and environmental science (8), enhancing knowledge of the effects 
of biodiversity and its drivers on the functioning of species and 
ecosystems (9), and strengthening projections of biodiversity in a 
changing world (10), resulting in improvements to conservation 
management and policy (11). For example, process-explicit models 
derived from the neutral theory of biodiversity (12) were some of 
the first models to show that rare species are less frequent in island 
communities than in adjacent mainland communities (13), providing 
important new information to conservation policy-makers regard-
ing vulnerability to human-driven environmental change (14). 
Process-explicit models of the neutral theory of molecular evolution, 
which simulate rates of genetic drift as products of effective popula-
tion size and generation length (15), enabled conservation geneticists 
to study the behavior of neutral alleles to better understand why 
extinction risk increases for species with small population sizes (16). A 
stronger integration of ecological and evolutionary theory in con-
servation science using process-explicit modeling promises to fur-
ther link the evolution of species traits at the individual level to the 
dynamics of communities and the overall functioning of ecosystems 
(17). Together, these advances are improving knowledge of how cli-
matic and environmental changes have shaped species assemblages 
in the past, strengthening confidence in projections of biodiversity’s 
future (7).

Recent reviews have established important benefits of process- 
explicit modeling approaches in macroecology (5, 18), ecosystem 
ecology (17), conservation science (10), and related disciplines. These 
studies highlight a need to use process-explicit models for managing 
ecosystems (17), improving theory (5, 18), and predicting species’ 
range shifts under ongoing and future climate change (10). However, 
there has been no synthesis of the broader uses of process-explicit 
models for unraveling the biological mechanisms responsible for 
shaping patterns of biodiversity in space and time in response to 
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Earth system drivers of environmental change. Here, we identify key 
properties of the structure and dynamics of biodiversity first uncov-
ered by process-explicit models, many of which are now guiding the 
future management of biodiversity.

The application of process-explicit models of spatiotemporal di-
versity in ecology and evolution can be traced back to MacArthur 
and Wilson’s model of island biogeography (Fig. 1), which linked 
patterns of biodiversity on islands to processes of movement (colo-
nization) and local extinction (19). Early process-explicit models 
include metapopulation models (20), which are used frequently 
today for conservation planning (21) and for informing species’ ex-
tinction risk (22). These models, which were initially limited to 
interactions and movements of subpopulations of a species, have 
now been expanded to include demographic and environmental 
stochasticity (23), species interactions, and community-level dynamics 
(24), allowing interlinked patches with different community com-
positions to be simulated and their dynamics understood. The first 
individual-based models followed shortly after the development 
of metapopulation models, permitting the inclusion of individual 
variation in dispersal behavior, genotype, competitive ability, and 
life history traits in simulations of population change (25). Today, 
individual-based models are used frequently not only for the manage-
ment of specific populations, including fisheries stocks (26), but also 
to answer paradigmatic questions about community assembly, food 
web ecology, and zoonotic disease (27).

In the 1980s, development of coalescent models of simulated 
genealogies (28) enabled the diversification of lineages to be studied 
in space and time (29), giving rise to the field of phylogeography. 
These early models showed how lineages can diverge without geo-
graphic isolation, illustrating potential mechanisms of sympatric spe-
ciation. More recently, they have been used to show how pathogens 

can rapidly evolve as they spread through a network of hosts (30), 
enriching fundamental understanding of past, current, and future 
disease dynamics (31). The latest generation of coalescent models 
can reconstruct genomic erosion in endangered species (32) and 
rapid directional selection (33) in response to subcentennial periods 
of environmental change.

The 1990s saw the advent of dynamic global vegetation models 
(DGVMs): process-explicit models that replicate global patterns of 
vegetation by simulating the growth and mortality of plant func-
tional groups under different climatic conditions (34). This devel-
opment enabled predictions of the capacity of the biosphere to store 
carbon (35) and produce crops (36) under current and future climate 
conditions. Today, DGVMs are being used to inform regional-to- 
global policies on food security, greenhouse gas emission scenarios, 
and the maintenance of ecosystem services (37). They can account 
for the effects of herbivory and fire regimes on vegetation structure 
(38), allowing the impacts of competing land management strate-
gies to be compared (11, 39).

In the early 2000s, models that integrate the evolutionary pro-
cesses of speciation and adaptation with the ecological processes of 
movement, extinction, and interaction began to be developed. By 
providing a mechanistic understanding of the physical and biological 
processes that shape Earth’s biodiversity, these models have aimed 
to illuminate the origins of biodiversity through direct tests of com-
peting scenarios (40). Many of these theories, established long ago 
by early naturalists (41–43), could not be directly tested with simpler 
process-explicit models or phenomenological approaches. Today, 
eco-evolutionary simulators provide opportunities to achieve new 
levels of realism in projections of assemblage dynamics under past 
and future global change (44).

The most recent developments in process-explicit modeling, 
which simulate multiple processes and patterns of biodiversity using 
complex mathematical components and logical algorithms, have 
resulted from a rapid rise in computational power following the turn 
of the 21st century (44–46). This advance, coupled with wider access 
to large ecological, genomics, and satellite-based remote sensing 
datasets, has enabled the generation and increasingly frequent ap-
plication of a broad variety of process-explicit models in ecological 
and evolutionary studies, parameterized or validated with more data 
and based on more-realistic assumptions than previously possible. 
Despite this accelerated expansion, the development and application 
of process-explicit models have followed an opportunistic path, with 
little strategy or coordination (47).

To address this current shortfall, we provide here a much-needed 
review of recent developments in process-explicit models, outlining 
considerations for researchers who contemplate building process- 
explicit models to evaluate the mechanisms that govern the structure 
and dynamics of past, present, and future biodiversity. We scrutinize 
the processes of codifying theory into models, identify key scientific 
advances from simulation outputs, and illustrate with examples how 
process-explicit models can safeguard future biodiversity.

PROCESS VERSUS PATTERN
Narrative accounts (42), correlative studies (48), and experiments 
(49) lead to hypotheses about the underlying causes of biodiversity 
change, and theoretical models demonstrate possible mechanisms 
(50). In comparison, spatiotemporal process-explicit models can 
directly assess and disentangle competing theories for drivers of 

Fig. 1. Modeling the mechanisms that govern the structure and dynamics of 
biodiversity. Process-explicit models can simulate changes in species distributions, 
population abundance, phylogenies, and genomes based on evolutionary and 
ecological processes (movement, extinction, ecological interaction, adaptation, 
and speciation) and drivers of environmental change (invasive species, land-use 
change, human exploitation, climate change, volcanism, and plate tectonics). Pro-
cesses and drivers are ordered clockwise according to the temporal scale at which 
they operate. The timeline shows breakthrough developments in process-explicit 
models of biodiversity up to 2001. Image of finches adapted from Charles Darwin.
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biodiversity, helping to elucidate interactions among underlying 
ecological and evolutionary mechanisms and drivers (5). An example 
of competing theories for biodiversity dynamics and resultant pat-
terns is the contrast between niche (51) and neutral theory (12). The 
former focuses on the role of environmental determinism, while the 
latter focuses on contingent and stochastic determinants of bio-
diversity dynamics.

Process-explicit models differ from pattern-based models by 
generating predictions based on explicit causal relationships between 
environmental drivers and ecological and evolutionary responses, 
rather than inferring implicit causal relationships based on correla-
tions between observed and modeled patterns (52). A physiological 
model, for example, is process-explicit if it characterizes the occur-
rence of a tree species in a landscape based on where the tree can 
minimize water stress. In contrast, a model is phenomenological (or 
correlative) if it maps the tree’s occurrence based on the statistical 
relationship between annual precipitation and observations of oc-
currence, because no processes linking precipitation and fitness are 
specified. The process-explicit model allows patterns (e.g., a con-
traction of the tree species’ range) to be connected to processes that 
cause them (e.g., an increase in seedling mortality in a drought), 
while the phenomenological model cannot explicitly link a changing 
pattern to a causative agent (53). Similarly, a phenomenological 
model that hindcasts plant functional types on the landscape based 
on correlations between climate and pollen records cannot link pat-
tern and process in the same way as a DGVM that hindcasts plant 
nutrient cycling and competition over the same period (54).

Phenomenological models and experimental observations 
sometimes find strong or unexpected correlations that can suggest 
the mechanisms that produce them. Proposed mechanisms can be 
used to build process-explicit models that can then be tested against 
observed patterns (7). Studies of the effect of biodiversity on eco-
system function offer an example of this ontology (Fig. 2). Effects of 
depauperate plant richness on ecosystem function were first observed 
empirically in experimental chambers and plots, which led to the 
proposed mechanism of niche complementarity, which, in turn, be-
came the basis for mechanistic models of ecosystem function (55). 
In this way, phenomenological and experimental analysis can pro-
vide important insights into the workings of nature that can be tested 
using process-explicit models.

REVEALING STRUCTURE AND DYNAMICS
Process-explicit models can operate at diverse levels of biological 
organization, ranging from the gene to the ecosystem (Fig. 3). The 
level of biological organization that is simulated—genetic, species, 
or ecosystem diversity—has, to date, dictated the number and com-
bination of possible biotic processes that are modeled (7). The five 
primary processes responsible for the origin, structure, and dynamics 
of biodiversity are speciation, ecological interaction, adaptation, 
movement, and extinction (including population extirpation). In this 
context, ecological interactions encompass both interspecific species 
interactions (competition, predation, herbivory, parasitism, and 
mutualism) and ecosystem processes (nutrient cycling, photosyn-
thesis, stability, etc.).

Ecosystem- and population-level models were the earliest process- 
explicit models. They generally include ecological interaction and 
local- to range-wide extinction processes (Fig. 3), but not movement, 
speciation, or adaptation. In contrast, more recently developed 

community-level models simulate all five primary biotic processes 
(46). These and individual-based models are becoming more fre-
quently used to unravel biological mechanisms that underpin 
spatiotemporal patterns of biodiversity (Fig. 3). These advances 
promise to lead to a greater awareness of the importance of eco- 
evolutionary processes in shaping biodiversity (52).

Genetic diversity
Although coalescent models have simulated genetic diversity—trait 
inheritance within species—for 40 years (28), early approaches did 
not model differences in DNA among individuals in space and time. 
This advance was not made until the beginning of the 21st century 
(Fig. 3) with the advent of a spatially explicit simulation framework 

Fig. 2. Moving from empirical observations to process-explicit models. The 
relationship between biodiversity and ecosystem functioning can be observed 
experimentally in mesocosms. Statistical analysis of experimental data can lead to 
proposed mechanisms of biodiversity functioning, such as niche complementarity 
(55). This mechanism can be integrated into process-explicit models to simulate 
interactions between community structure and function. Image credits: photograph 
(top panel), Matthew Pintar; plant icons (middle panel), Andy Wilson.
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for population genetics: the serial-genetic simulator SPLATCHE 
(SPatial and Temporal Coalescent in a Heterogeneous Environment). 
The first studies to use SPLATCHE found that range expansions in 
heterogeneous environments produce genetic diversity patterns 
contingent on the geographical origin of the expansion, allowing 
spatially explicit genetic models to trace back the origin points of 
range expansions (56). Subsequently, coalescent-based process- 
explicit models have been frequently used to infer the effects of species’ 
range expansions, contractions, and shifts on patterns of genetic 
diversity, using ancient and modern DNA. They have revealed that 
genetic diversity declines toward the leading edge of a species range 
more steeply than predicted by neutral theory (57) and that rapid 
range contractions conserve more genetic diversity in refugial pop-
ulations than slow range contractions (58). These models have also 
shown that present-day isolation of a population is a poor indicator 
of the past diversity of the lineage and historical barriers to gene 
flow (59) and that rapid warming events can reconfigure species 
assemblages (60). Together, these reconstructions of past patterns 
of genetic diversity using process-explicit models are helping to im-
prove projections of future patterns of genetic diversity by parameter-
izing known responses to environmental shifts (61).

Virtual genomes can be simulated to test and refine theories of 
genetic diversity. These genomes are simulated with mutation, 
migration, and divergence on computer-generated landscapes using 
a priori mutation rates and dispersal patterns. This approach has 
been used to simulate species’ range expansions, revealing that 
introgression [transfer of genetic information from one species to 
another as a result of hybridization (62)] is likely to occur from the 
resident population to the invading population, regardless of the 
relative densities of the resident and invader populations (63). Sim-
ulations of virtual genomes have also shown that new mutations 
near the leading edge of an expanding range have a higher frequency 
and wider spatial distribution than in a stationary population (64). 
This result suggests that spatially expanding populations have an 

increased rate of evolution at their frontier (64), with important 
implications for the management of invasive populations and range- 
shifting native species.

Species diversity
Process-explicit models can be used to decipher patterns of species 
diversity at the level of the individual, species, or community, and 
findings underpinning the operation of biological processes at these 
different levels of species diversity can reinforce or amplify one an-
other. For example, an individual-level model can elucidate the 
evolution of optimal dispersal strategies within a single habitat island 
(65), a population-level model can reveal species diversity patterns 
across a chain of islands shaped by different dispersal strategies (66), and 
a community-level model can infer dispersal strategies in different 
functional groups, based on diversity across an entire region (67). 
In this way, process-explicit models at these three levels of organiza-
tion allow us to investigate and potentially to integrate the impact of 
movement on species diversity patterns at multiple biological scales.

Processes can be modeled at the level of the individual organism 
with agent-based models (68) and physiological approaches (69). 
The former can potentially capture any of the five fundamental 
biotic processes responsible for biodiversity and can generate 
complex population- and community-level phenomena that arise 
from ecological interactions among individuals (70). For example, 
individual-based models of initial colonization in a range expansion 
or shift have shown that the interaction of local adaptation with 
timing (71) and speed (72) of colonization can alter the expected 
distribution of a species along an environmental gradient.

However, models built at the individual level can be computation-
ally intensive, particularly if they simulate complex eco-evolutionary 
processes for many populations of individuals. Moreover, they can 
be difficult to parameterize and validate (Fig. 4), because data on 
biotic processes like movement and other attributes are often un-
available at the level of the individual. The computational demands 
of these models have led some researchers to use machine learning 
techniques (as emulators) to generalize process-explicit model 
behavior post hoc at small scales and apply those generalizations to 
larger scales (73). Others have used virtual landscapes to simulate and 
explore the population-level effects of different movement strategies, 
requiring neither biotic nor environmental data for parameterization 
(71). This approach, which allows for the simulation of data-poor 
processes at the individual level, has shown that range shifts can be 
accelerated by the evolution of greater dispersal ability in marginal 
habitats (65).

Physiological models, such as NicheMapper (74), and forest gap 
models, such as ForClim (75) and PHENOFIT (76), simulate only 
local- to range-wide extinction in animals and trees, respectively, 
making them computationally less intensive than individual-level 
models at large spatial scales. These approaches assume that if envi-
ronmental conditions are suitable given an organism’s physiological 
traits, it will persist; otherwise, it will die. These models are built on 
physiology and thermal tolerances, which are used to predict where 
individuals can survive. Physiological models can refine projections 
from phenomenological models of species distribution by identify-
ing locales where heat stress will cause local extinction, informing 
conservation management (53, 77).

Individual-level models are, nevertheless, often constrained to 
ecological and evolutionary processes at local extents, often failing 
to account for potentially important coarser-scale processes that 

Fig. 3. Processes and levels of biological organization. Bars show the number 
of studies using process-explicit models published before 2006 and in the 5-year 
periods from 2006 to 2016 and from 2016 to 2021, color-coded to indicate the unit 
of biological organization simulated. Pie charts show the biotic processes (speciation, 
ecological interaction, adaptation, movement, and extinction) modeled as fractions 
of the total number of processes modeled across all studies for each time bin.
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can affect species diversity. Population models, which find their roots 
in simple logistic growth equations or matrix population models 
(78), can simulate movement and mortality in a network of popula-
tions extending across a species range (79, 80). They can simulate 
trait values and genes, thus incorporating adaptation or speciation 
among populations over time, uncovering interactive effects of ad-
aptation and dispersal on distributions of phenotypes (81). Although 
these models usually feature one or a few focal species, they can be 
used to simulate many populations of interacting species, capturing 
ecological interactions and community dynamics (66). For example, 
a model of competing and evolving populations has shown that cer-
tain syndromes of life history traits (mating system and dispersal 
ability) outcompete others—a mechanistic prediction that fits with 
empirical observations in plants (81).

Pathways to extinction are difficult to detect and disentangle 
phenomenologically (82) because they are complex, often starting 
long before the extinction event, resulting from biological responses 
to natural and human-induced factors that operate at multiple 
spatiotemporal scales (80). Linking population models to correla-
tive species distribution models to address well-recognized limita-
tions of pattern-based approaches (83) is allowing the processes of 
movement, extinction, and—most recently—adaptation to be sim-
ulated over multiple millennia (84). This approach is revealing how 
ecological strategies, and demographic and evolutionary traits, inter-
act dynamically with past environmental change and human-driven 
factors to cause the decline and eventual extinction of species (80).

Biodiversity loss can be modeled for groups of interacting species 
using community-level models. Process-explicit models at the com-
munity level simulate biogeographical dynamics with species as 
functional units within the simulation (52). Unlike population mod-
els, which typically have species or population distributions as their 
outputs, or ecosystem models, which generally produce maps of 
ecosystem function or plant functional guilds (see below), these 
community-level biogeographical models usually generate species 
richness maps and range size frequencies (46).

Most community-level process-explicit models encompass all of 
the five biotic processes that drive biodiversity, making them aptly 
suited for testing differing hypotheses about the underlying causes 
of patterns of biodiversity, including how lineages diversify over 
space and time. For example, community-level process-explicit 
models have been used to determine whether neutral theory can 
explain empirical patterns of reef community dynamics, finding 
support for the theoretical expectation that range size should increase 
with dispersal ability (85). However, models of community-level 
processes not only are used to answer theoretical questions about 
biodiversity but also can be applied directly to real-world ecological 
systems to understand patterns of species richness (86), community 
assembly (87), and diversity loss (88) in a changing world. Diversi-
fication models with simple parameterization have applications in 
conservation biology, including identifying the effects of environ-
mental change on biodiversity hotspots (89) and predicting the loss 
of species in a community after habitat destruction (88). Despite 

Fig. 4. Model structure and assessment. (A) shows model structure (parameterization) and (B) shows model assessment (verification and validation) for five levels of 
biological organization (left to right): gene, individual, population, community, and ecosystem. Model structure categories (A) include (top to bottom) multiple biotic 
processes and  dynamic environment (env.), single biotic process and dynamic environment, single biotic process and static environment, either a biotic process or 
environmental data, and no empirical data. Model assessment categories (B) include (top to bottom): multivariate validation (Multivar. valid.), univariate (Univar.) validation, 
nonstatistical (Non-stat.) validation, verification (verif.) using theory, and no verification or validation. For additional detail, see the “Relationship to data and theory” section 
and Supplementary Methods. Size of circles indicates the relative number of studies reviewed (total = 225).
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their complexity, these process-explicit models of biogeographical 
dynamics can be validated (Fig. 4) using targets of current-day range 
size frequency distributions (45).

Ecosystem diversity
Ecosystem diversity models simulate the structure of functional groups 
of terrestrial and marine organisms. The coexistence and interactions 
of these groups are used to map the distribution of ecosystems (90). 
Interactions among terrestrial autotrophs and the abiotic environ-
ment are modeled with DGVMs (34), while fisheries management 
models (91) and general ecosystem models (92) also include primary 
and secondary consumer dynamics, enabling simulation of energy 
transfer through food webs. These ecosystem diversity models are 
being used to forecast and manage ecosystem services, including 
carbon storage (93), clean water supply (94), and food security (95) 
in a changing world. They have shown that freshwater supply will 
be reduced under future warming to the detriment of terrestrial 
ecosystem functioning (96), that increased hurricane frequency 
threatens the structure and productivity of reef-fish communities 
(97), and that habitat fragmentation affects the trophic structure of 
ecosystems (98). Furthermore, process-explicit ecosystem models 
have shown that forest function is more resilient to warming events 
in high- than in low-diversity forests (99), illustrating causative mech-
anisms for experimental observations (55).

DGVMs simulate the distribution of plant functional types as 
well as their fluxes of carbon, water, and nutrients through the envi-
ronment (34), enabling them to simulate dynamic feedbacks between 
the biosphere and the climate when coupled to climate models (100). 
This coupling of models has uncovered important interactions 
between climate, CO2, and ecosystem function, including evidence 
that a positive interaction between plant productivity and elevated 
levels of CO2 can potentially offset the negative effects that climate 
change and, more specifically, increased aridification can have on 
productivity (101). Moreover, by hindcasting ecosystem diversity 
dynamics over glacial-interglacial cycles, DGVMs have disentangled 
many of the effects of climate on ecosystem structure (102). For ex-
ample, modeling the interaction between deglacial warming and 
megaherbivore die-off following the last glacial maximum reveals 
how high-latitude mammoth steppe—Earth’s most extensive biome 
at the time—was converted to a taiga-tundra ecotone (38).

While more complex general ecosystem models can simulate the 
entire ecosphere, from phyto- and zooplankton to apex carnivores, 
capturing complex food web dynamics, they do not as yet include 
two-way interactions with climate (92, 98). Consequently, they are 
frequently used to test theories regarding ecosystem structure, in-
cluding relationships between heterotroph biomass and net primary 
productivity (92), and to determine the impact of recent land-use 
change on ecosystem function (98). The application of these ecosystem- 
level models in fisheries management has uncovered crucial ecosystem 
services provided by coral reefs, including calcium carbonate depo-
sition and coastal protection, showing how overfishing disrupts these 
services to nature and people (103).

RELATIONSHIP TO DATA AND THEORY
Process-explicit models have a variety of relationships with data 
and theory (fig. S1). Some process-explicit models are theory driven: 
Their purpose is to explore the implications or applications of an 
ecological theory, such as the neutral theory of biodiversity (12), the 

species-area relationship (104), or the general dynamic theory of 
island biogeography (105). Others are theory scaffolded: Their pur-
pose is to understand an ecological system empirically and to use 
theory as a scaffold by which to structure the model and interpret its 
outputs (101).

While process-explicit models are diverse in structure (60, 84), 
they exist on two distinct continua, based on (i) their use of empir-
ical data for parameterization and (ii) how they are verified and/or 
validated (Fig. 4). Empirical data are not necessary to build and run 
a process-explicit model. Indeed, many theory-driven models use 
arbitrary values for parameters and explore the interactions and 
patterns that result from the model (87). These models are at one 
end of a parameterization continuum. Further along the continuum 
are models that use either biotic data (such as genetic sequences or 
species occurrence) or environmental data (such as spatiotemporal 
climatic fluctuations or bathymetry change) to parameterize models, 
but not both (46). The next category of models includes those that 
use biotic and static environmental data (106), followed by models 
that use biotic and dynamic environmental data (34). In the last two 
cases, biotic data represent a single level of biological organization: 
gene, individual, population, community, or ecosystem (7). At the 
most extreme end of the parameterization continuum lie models 
that use dynamic environmental data and biotic data to simulate 
processes across multiple levels of biological organization: for exam-
ple, simulating individual-level movement (based on seed dispersal 
by wind) and population-level mortality (based on survival across 
individuals) (107).

A second distinct gradient specifies how data are used for verifi-
cation and validation in process-explicit models (Fig. 4). Verification 
is a check to ensure that the implemented model meets the primary 
theoretical assumptions it has been built to represent. In contrast, 
validation evaluates the level of correspondence between the imple-
mented model and the study system (108). At one end of the verifi-
cation and validation continuum, model outputs are not verified or 
validated at all. Moving up the continuum, output patterns can be 
verified for congruence with theory by comparing model outputs 
with well-established theoretical relationships, such as the mid- 
domain effect (109). Models can be validated through visual inspec-
tion of patterns based on observational data, using nonstatistical 
procedures (110). Statistical validation allows model outputs to be 
evaluated with patterns of empirical data, by means of measures 
such as coefficient of determination (r2), root mean square error, or 
true skill statistic (102). At the most data-heavy end of the verifica-
tion and validation continuum lies multivariate statistical validation 
(59), in which models are evaluated on the basis of their ability to 
simultaneously demonstrate goodness of fit to multiple empirical 
patterns. This demanding level of validation is now being applied to 
pattern-oriented modeling (an emerging and powerful technique in 
data science), in which mechanisms governing the structure and 
dynamics of biodiversity are identified by converging model simu-
lations to independent multivariate validation targets (45, 80).

Figure 4 shows how process-explicit models with diverse relation-
ships to data can be used to decipher the mechanisms underlying 
the structure of biodiversity. Models that use little or no empirical 
data can be used to test ecological and evolutionary theories, such as 
modes of speciation (111). These primarily theory-driven models 
are useful even when biological data are not available for validation; 
for example, data-free process-explicit models can test the sensitivity 
of model outputs to underlying processes (111), distinguishing 
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metapopulation dynamics from neutral dynamics or random com-
munity assemblage (112). Theory-scaffolded models with complex 
parameterization often have greater explanatory power, particularly 
if they use more than one level of biotic data for parameterization 
and validation, and if they simulate dynamic drivers of global 
change affecting the spatial structure of biodiversity. These addi-
tional data inputs can allow otherwise necessary model assumptions 
to be relaxed, such as an assumption of unlimited movement (107) 
or static human land use (39), while multivariate validation targets 
(despite being, so far, rarely used) provide more stringent tests of 
model simulations.

SAFEGUARDING BIODIVERSITY
Sustainable management of biodiversity has been recognized as a 
policy goal for 30 years (113); however, progress in halting the 
decline and degradation of biodiversity has been limited (114). 
Reasons for failing to reduce biodiversity loss are complex, reflecting 
long-lasting knowledge gaps on biodiversity dynamics (47), as well 
as insufficient integration of biodiversity science in policy making 
(115) and lack of motivation to deliver the required biodiversity 
changes (116). An incomplete understanding of the mechanisms that 
govern the structure and dynamics of biodiversity and a tendency to 
use correlative rather than process-explicit approaches to forecast 
the future of biodiversity in a changing world (10) have constrained 
capabilities to set productive biodiversity targets, develop cross- 
cutting solutions for restoring nature, and obtain national commit-
ments to biodiversity conservation.

Process-explicit models have a diverse range of applications, in-
cluding formulating and assessing potential solutions for mitigating 
future genetic-, species-, and ecosystem-level collapse. Currently, for 
example, the paleorecord is being used to identify biological mech-
anisms that mediate responses to climate- and human-driven change 
using process-explicit models (117). These paleo-models can dis-
entangle past determinants of genetic diversity, range shifts, species 
richness, and ecosystem structure and function. By specifying the 
causal processes that underpin biodiversity change, they can provide 
the context needed to improve confidence in predictions of bio-
diversity’s future (7), leading to improved computational platforms 
for setting biodiversity targets and better solutions for mitigating 
adverse changes to biodiversity (8).

The genetic signatures of demographic responses of species to 
environmental changes can be decoded using genetic simulation 
models (6) to better manage future biodiversity (118). For example, 
process-explicit models of gene fixation, which allow demographic 
trends and gene flow to be reconstructed (16), are establishing the 
importance of intraspecific genetic diversity for resilience to accel-
erated climatic change (119). There is now a push to use this tech-
nique more widely to improve knowledge of how rapid climatic 
change affects patterns of genetic diversity (61). In the absence of 
ample genetic samples, process-explicit models can still be used to 
test theories central to conservation genetics using virtual genetic 
sequences and landscapes (120) to deliver valuable information for 
conserving future genetic diversity (121).

Historical context is crucial for understanding the threat of future 
declines in species distributions. Process-explicit models constructed 
at the individual and population level can be used to identify demo-
graphic processes that cause range shifts for a species or suites of 
species in response to climatic and environmental drivers, improving 

species threat assessments (77). Because individual-based models 
often operate at a level of detail that is not necessary for simulating 
range dynamics across large extents, process-explicit population- 
level models are more commonly used to project past and future 
range dynamics. These population-level models can be used to 
identify ecological traits that cause species to be differentially prone 
to regional and range-wide extinction (122) and to evaluate the effi-
cacy of current methods for identifying threatened species (123). 
Population-level models that incorporate adaptation as a process 
have been influential and instructive in revealing the role of gene 
flow along ecological selection gradients, and its inhibiting effect on 
local adaptation to environmental change (124).

Hotspots of biodiversity are of particular conservation concern 
because they support high concentrations of species, particularly 
endemics (125). Process-explicit models built and validated at the 
community level to simulate geographical patterns of species richness 
and endemism can identify mechanisms central to the maintenance 
of past and contemporary hotspots of species richness (126), providing 
a framework for assessing vulnerability to future climate and envi-
ronmental change (Fig. 5). If simulations can capture community- 
level responses to realistic tempos and magnitudes of future global 
change, these new predictive approaches will benefit 21st century 
environmental management and conservation (7).

To illustrate the state of the art in broad-scale modeling of bio-
diversity and its potential application for biodiversity conservation, 
we offer an example of a community-level, process-explicit model 
that incorporates all five biological processes that govern the struc-
ture and dynamics of biodiversity in a temporally dynamic environ-
ment (46). The model was designed to simulate the geographic 

Fig. 5. Models for predicting continental species richness. Community-level 
biogeographical models (46), driven by interactions between climate and biological 
processes, can incorporate all five biological processes that govern biodiversity: 
movement, extinction, ecological interaction, adaptation, and speciation. Model 
outputs can simulate maps of current-day and future species richness and endemism 
(rarity-weighted species richness). Top plot shows temperature across thousands 
of years (ka). Image of finches adapted from Charles Darwin.
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distributions and patterns of overlap of species ranges in response 
to the past 800,000 years of climate change in South America (Fig. 5). 
In this model, evolutionary niche dynamics drive range expansion 
and fragmentation (leading to speciation), adaptation to climatic 
conditions, and extinction. Combinations of parameter settings 
(dispersal distance, evolutionary rate, time for speciation, and in-
tensity of competition) for virtual species were chosen a priori, pro-
ducing many different potentially plausible range maps. Although 
not directed by any empirical validation targets, the emerging maps 
closely resembled contemporary species richness of major South 
American taxa. Combinations of parameters that closely reproduced 
the current-day biodiversity of South American avifauna (including 
hotspots of species richness and endemism) showed that low rates 
of adaptation to past climatic change were required to reconstruct 
observed patterns of species richness. In the future, such community- 
level simulation models (built to simulate the past and validated in 
the present; Fig. 5) could be parameterized with climate forecasts to 
predict strongholds of species richness under future climates. The 
subsequent results could be used to guide the protection and future 
management of biodiversity.

By identifying the biological mechanisms, drivers, and their in-
teractions that mediate changes in ecosystem structure and function, 
process-explicit models can help safeguard the services ecosystems 
provide to nature and people. Early ecosystem models were used to 
investigate the effects of increased atmospheric carbon on vegetation 
communities (96). More recent models have incorporated complex 
interactions between multiple drivers of global change and ecosystem- 
level processes, including the effects of agriculture and land-use 
change (93). This research has strengthened knowledge of the drivers 
and responses that underpin change in ecosystem structure and 
function (36, 93), improving projections (127) and informing pro-
tocols for assessing ecosystem threat status (128). For example, 
DGVMs have shown mechanistically how 20th century agriculture 
caused a 24% reduction in global vegetation and a 10% reduction in 
global soil carbon (93). A better understanding of processes of eco-
system change enables the simulation of the effects of current and 
future climatic and environmental change (including altered fire 
regimes) on important ecosystem services, such as agricultural pro-
ductivity, freshwater availability, and timber production (36, 39).

Climate projections are currently made using models characterized 
by complex system dynamics, including interactions and feedbacks 
between the atmosphere, ocean, land, and society (129). While anal-
ogous models for projecting biodiversity change have typically been 
simpler than approaches used in climate science, general ecosystem 
models (92) and process-based community assemblage models (44) 
offer new and more robust methods for projecting the future distri-
bution of life on Earth. These next-generation biodiversity models, 
which explicitly capture the structure and dynamics of biodiversity, will 
strengthen our capacity to set achievable biodiversity targets that 
promote engagement and investment where change is needed.

LOOKING FORWARD
Although phenomenological models are a crucial first step toward 
understanding the potential determinants of current and past spa-
tial patterns of biodiversity, process-explicit models are needed to 
identify causal processes that govern the structure and dynamics of 
biodiversity, and to exclude those that do not. Increased open access 
to curated georeferenced occurrence records, dated fossils, libraries 

of genetic sequences, and climate simulations will continue to 
provide innovative opportunities to apply process-explicit models, 
especially to connect inferences of past responses of biodiversity 
to different rates and magnitudes of contemporary climate and 
environmental change (117). These opportunities include testing 
key assumptions of existing biodiversity models—such as the com-
mon assumption that processes driving changes in biodiversity 
are scale invariant (130)—and competing theories for large-scale 
biodiversity patterns, including geographical gradients in species 
richness (44).

Continuous simulations of the transient late Quaternary climate 
are needed, ideally at fine spatial resolutions, to determine population-, 
species-, community-, and ecosystem-level responses to abrupt (as well 
as gradual) climatic change using process-explicit models (131). 
The TRaCE21ka experiment based on the Community Climate System 
Model version 3 (132) has bridged this gap, but it spans only the 
past 21,000 years. Higher spatiotemporal resolution paleoclimate 
simulations from Earth systems models before 21,000 years ago that 
include solar flux, ice sheet extent, and sea level changes will provide 
a more thorough understanding of the mechanisms responsible for 
spatiotemporal patterns of biodiversity at evolutionary time scales 
(7). Statistical emulators of climatic change will be useful in filling 
this data and knowledge gap (133), particularly in the Southern 
Hemisphere, for which there is a paucity of high-resolution simu-
lated data before the last glacial maximum (134). Including better 
reconstructions of solar variability, volcanic eruptions, and land use 
during the Holocene in transient simulations of Earth’s climate will 
provide a more complete picture of more recent temporal change in 
regional climates and the biodiversity they support.

Integrating paleoecological and neoecological perspectives into 
process-explicit models is key to contextualizing the present and 
anticipating and visualizing ecological responses to future global 
change (117). Emerging genomic techniques are allowing genetic 
diversity and effective population size to be estimated over short 
periods (<100 years) of environmental change, providing inferences 
of eco-evolutionary change to recent and/or punctuated disturbance 
events (32, 33, 135) that can feed directly into process-explicit models 
of range collapse and population declines. Importantly, projections 
of recent climate, vegetation, and land-use change have been har-
monized with ancient projections, allowing their effects on biodi-
versity to be characterized continuously in process-explicit models 
that run from as far back as 21,000 years ago to the present day (136) 
and, in some cases, into the future (137).

Adaptation was first incorporated into spatial process-explicit 
models in the early 2000s (138) and has since become more common 
in ecological and evolutionary models. However, it still remains the 
most infrequently modeled biological process. A more regular inte-
gration of adaptation into process-explicit models of climate change 
responses will benefit from taxonomically diverse datasets of historic 
DNA that are readily available today (139) and from technological 
advances that allow ancient DNA to be used to reconstruct shifts in 
genetic diversity and adaptations to large-magnitude and abrupt 
climatic change (140). Adding community dynamics to population 
models and demography to community models will also strengthen 
projections of biodiversity change. Metacommunity models with 
simplified food webs can bridge this gap by modeling demographic 
interactions between populations of multiple species in a spatio-
temporally explicit manner (141). Community-level models can 
integrate a higher level of biological organization by combining 
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ecosystem-level drivers such as fire with processes of plant commu-
nity assembly (142).

Achieving more detailed mechanistic understandings of patterns 
of biodiversity—from the gene to the ecosystem level—will require 
a greater focus on rigorous statistical validation of process-explicit 
models using independent multivariate data that are spatiotemporally 
explicit. In systems where theory is not yet well developed, empirical 
data for model parameterization are needed to simulate realistic 
outputs. However, as the mechanisms underpinning a system’s bio-
diversity become better understood, model outputs will be simulated 
using theory alone. Realistic predictions generated from a strong 
theoretical framework are the pinnacle that ecologists and evolu-
tionary biologists should be aiming for when wielding process- 
explicit models.

Process-explicit models have been instrumental in improving 
knowledge of the distribution of life on Earth, revealing complex 
causal processes for contemporary patterns of biodiversity that could 
not be discerned from experimental approaches or phenomenological 
models. A deeper recognition of the structure and dynamics of 
organisms, communities, and ecosystems in process-explicit models 
is helping to protect and restore biodiversity by formulating remedies 
to existing problems and countering undesirable future changes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2271
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