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BACKGROUND: Effects of recent global warm-
ing have been documented in every biome on
Earth. Safeguarding biodiversity and ecosys-
tem services against future impacts requires
reliable predictions of climate-driven biologi-
cal responses and effective solutions. Inte-
grated research in paleoecology, paleogenomics,
paleoclimatology, and macroecology offers
new prospects for projecting and managing
current biotic responses to climate change.
By revealing mechanisms that shaped past
and present biodiversity patterns, this inter-
disciplinary intersection provides an empirical
foundation for anticipating responses to ac-
celerated climate change. New insights are
coming fromdevelopments in high-throughput

sequencing, computational technologies, eco-
logical simulation models, and increased spa-
tiotemporal resolution of paleoenvironmental
data from late Quaternary paleo-records (the
past ~130,000 years). Although these advances
reveal biodiversity responses to past global
change, benefits for improving forecasting of
biodiversity impacts and refining conservation
policies are lagging. Abundant opportunities
exist for using the late Quaternary paleo-
record to inform conservation practices and
policies in the context of climate change.

ADVANCES: The threat of anthropogenic cli-
mate change demands that conservationists
seek more effective ways of improving man-

agement of biodiversity and ecosystems. Ana-
lytical approaches that combine high-resolution
paleoclimate proxy and simulation data, pre-
cisely dated fossils, and genetic diversity esti-
mates from ancient DNA are unveiling biotic
responses to various rates and magnitudes of
natural climate warming, some comparable
with 21st century projections. Reference periods
in Earth’s history provide natural laboratories
for testing fundamental ecological theory and
offer opportunities to identify ecological pro-
cesses that influence the likelihood of extinc-
tion and ecosystem change, to test efficacy of
threatened-species assessments and resilience
of biota during periods of abrupt warming,
and to locate biogeographic areas that remain
stable under shifting climates. Refinement of
essential biodiversity variables by using past
biodiversity dynamics will improve our under-
standing of climate-driven shifts in species
populations, community composition, and eco-
system structure and function. From this, bio-
diversity early-warning systems, conservation
strategies, and decision-making tools can be
tested at fine-grain spatiotemporal scales, pro-
viding an evidence base for understanding
and improving projections of species- and
ecosystem-level collapse.

OUTLOOK:As paleo-archives becomemore rou-
tinely integrated into conservation science,
guidelines for the management of nature will
benefit fromunderstanding howdifferent spa-
tiotemporal scales of past climate change af-
fected species and ecosystems across the planet.
This will require global initiatives to harmonize
vast numbers of paleoclimate-proxy and paleo-
ecological records with high-resolution paleo-
climate projections fromEarth systemmodels.
Paleoecological data offer a means to disen-
tangle climate and nonclimate drivers of bio-
diversity and ecosystem function, particularly
in concert with simulation models and inte-
grated analytical techniques that compare bio-
tic change across regions with contrasting
histories of human colonization and land use.
Moreover, developments in paleogenomics that
pinpoint adaptation across and within spe-
cies will identify microevolutionary processes
that lend resilience to biodiversity in shift-
ing climates. Incorporating paleo-archives
in conservation policies will equip decision-
makers with improved strategies for miti-
gating biodiversity loss from climate change in
the Anthropocene.▪
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Paleo-archives offer new prospects for benchmarking and maintaining future biodiversity. Integrated
research using paleo-archives provides empirical foundations for contextualizing climate-driven changes
in species populations, community composition, and ecosystem structure and function. These observations
can inform conservation strategies under anthropogenic climate change.C
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Dorthe Dahl-Jensen7,8, M. Thomas P. Gilbert9,10, Bette L. Otto-Bliesner11, Anders Svensson7,
Spyros Theodoridis2, Janet M. Wilmshurst12,13, Jessie C. Buettel6, Elisabetta Canteri1,2,
MatthewMcDowell6, LudovicOrlando14,15, July A. Pilowsky1,2, CarstenRahbek2,16,17,18, DavidNogues-Bravo2

Strategies for 21st-century environmental management and conservation under global change require a
strong understanding of the biological mechanisms that mediate responses to climate- and human-driven
change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem
services. Biodiversity responses to past rapid warming events can be followed in situ and over extended
periods, using cross-disciplinary approaches that provide cost-effective and scalable information for
species’ conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the
intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant
case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.

G
lobal mean temperatures are nearing
the upper bound of those experienced
over the past 1.2 million years (1), and
their effects are beingdocumented across
every biome on Earth (2). As climate

change intensifies in the coming decades, safe-
guarding biodiversity and the services that
ecosystems provide to nature and peoplemust
remain high on the international policy agenda
(1–5). Effective interventions will require con-
servation actions based on reliable predictions
and evidence-based solutions (3). However, ro-

bust forecasts of species- to ecosystem-level re-
sponses to changing climates remain difficult
(4), adversely affecting conservation planning
and outcomes (5).
Research at the intersection of paleoecology,

paleoclimatology, paleogenomics, macroecol-
ogy, and conservation biology is offering new
approaches to anticipate andmanage responses
of biodiversity and ecosystems to climate and
other environmental change (6). By revealing
ecological and evolutionary mechanisms that
have shaped past and current-day biodiversity
patterns, this research provides an empirical
foundation for quantifying the broad footprint
of accelerated rates of climate change on nat-
ural systems and for identifying long-term eco-
logical and evolutionary processes that govern
climate-biodiversity dynamics (7).
Although human land use, over-exploitation,

and movement of non-native species remain
primary drivers of biodiversity loss (8), climate
change will grow in importance in the coming
decades (1, 9). Paleo-archives allow biodiver-
sity responses to climate perturbations of vary-
ing rates andmagnitude, some approximating
those predicted for the near future (10), to be
tracked in situ (places where they occurred)
over centuries to many millennia (11, 12). Past
warming intervals provide critical reference
points in Earth’s history that can be used as
natural laboratories to identify biotic vulnera-
bility and resilience to rapid climatic change
(7) and to connect ecological and evolutionary
theory to the design and implementation of con-
servation practices to protect biodiversity (13).
Many species on Earth today have existed

for hundreds of thousands to millions of years
(14), having experiencedmany global glacial-
interglacial cycles, each including rapid regional
warming events, some spanning only decades

(15). Although in many biogeographic regions
these events are comparable in pace and mag-
nitude with 21st century forecasts (16), they do
not offer a direct analog for future globalwarm-
ing from recent anthropogenic climate forcing
(17). Nevertheless, they can reveal actual species-
and ecosystem-level responses to previous
rapid changes in climate (11, 12, 18, 19). One of
the most powerful features of the paleo record
is its heuristic nature (20), providing concrete
narratives, scenarios, and other thinking tools
to better anticipate and visualize the potential
ecological and evolutionary consequences of
future climate change, enhancing knowledge
of principles and mechanisms for conserving
biodiversity and ecosystem services (6, 7).
Increased availability of precisely dated fos-

sil records, genome-scale ancient DNA, and
simulations with sufficient temporal resolu-
tion for reconstructing rapid climate change
events means that the late Quaternary (last
~130,000 years) is providing new and effective
opportunities to understand better the effects
of climate change on biodiversity dynamics
(7, 21), bolstering conservation knowledge
(22, 23), particularly in the face of uncertain-
ties on impacts of future climate change (24).
This includes improved information on the
mechanisms bywhich species have copedwith
high rates andmagnitudes of climate change
at a range of spatiotemporal scales, including
those directly relevant to vulnerability assess-
ments (3), based on sensitivities and adaptive
capacities to climate change at human-relevant
time scales (5).
With a growing emphasis on integratingpaleo-

biology into conservation biology (13, 20, 22–25),
and the emergence of conservation paleobiol-
ogy (6), clear guidelines are needed to define
when, where, and how scientists can use the
late Quaternary paleo-record, spanning the
132,000 years since the start of the Last Inter-
glacial (LIG), to provide insights for conserva-
tion policies that address climate change. The
late Quaternary represents the origins of extant
ecosystems (21), providing a suitable geohisto-
rical period for informing responsible manage-
ment of Earth’s ecosystems and diverse biota
under trajectories of future climate change.
Here, we pinpoint where and when climatic
transitions on human-relevant time scales are
found in the paleoclimate record and show
how these reference points in Earth’s history
can be used as mensurative experiments to
establish likely consequences of future global
warming for terrestrial biodiversity loss and
ecosystem properties, including goods and
services provided to humanity.
Approximately 40% of terrestrial ecosystems

are projected to have experienced past shifts
in temperature that are similar in pace and
magnitude to regional-scale future forecasts
(16). Thus, there is enormous potential to use
geohistoricaldata tobetterderive and strengthen

RESEARCH

Fordham et al., Science 369, eabc5654 (2020) 28 August 2020 1 of 10

1The Environment Institute and School of Biological Sciences,
University of Adelaide, South Australia 5005, Australia.
2Center for Macroecology, Evolution, and Climate, GLOBE
Institute, University of Copenhagen, Copenhagen Ø 2100,
Denmark. 3Southwest and South Central Climate Adaptation
Science Centers, U.S. Geological Survey, Tucson, AZ 85721,
USA. 4Department of Geosciences and School of Natural
Resources and the Environment, University of Arizona,
Tucson, AZ 85721, USA. 5Department of Biosciences,
Durham University, Durham, DH1 3LE, UK. 6School of Natural
Sciences and ARC Centre of Excellence for Australian
Biodiversity and Heritage, University of Tasmania, Hobart,
Tasmania 7001, Australia. 7Centre for Ice and Climate, Niels
Bohr Institute, University of Copenhagen, Juliane Maries Vej
30, 2100 Copenhagen Ø 2100, Denmark. 8Centre for Earth
Observation Science, University of Manitoba, Winnipeg MB R3T
2N2, Canada. 9Center for Evolutionary Hologenomics, GLOBE
Institute, University of Copenhagen, Copenhagen Ø 2100,
Denmark. 10University Museum, Norwegian University of
Science and Technology, Trondheim, Norway. 11Climate and
Global Dynamics Laboratory, National Center for
Atmospheric Research, Boulder, CO 80307-3000, USA.
12Long-Term Ecology Laboratory, Manaaki Whenua–Landcare
Research, Lincoln 7640, New Zealand. 13School of
Environment, The University of Auckland, Auckland 1142,
New Zealand. 14Laboratoire d’Anthropobiologie Moléculaire et
d’Imagerie de Synthèse UMR 5288, Université de Toulouse,
CNRS, Université Paul Sabatier, France. 15Section for
GeoGenetics, GLOBE Institute, University of Copenhagen,
Copenhagen Ø 2100, Denmark. 16Department of Life
Sciences, Imperial College London, Ascot SL5 7PY, UK.
17Danish Institute for Advanced Study, University of Southern
Denmark, Odense, Denmark. 18Institute of Ecology, Peking
University, Beijing 100871, China.
*Corresponding author. Email: damien.fordham@adelaide.edu.au

D
ow

nloaded from
 https://w

w
w

.science.org at C
ary Institute of E

cosystem
 Studies on M

ay 05, 2023



conservation management and policy through
improved knowledge of biotic responses to
climatic stressors. Leveraging these paleo “log-
books” of climate-driven biodiversity dynam-
ics requires harmonized measures of ancient,
recent, and forecast responses of biodiversity
to climatic change. Newly constructed “essen-
tial biodiversity variables” (26) can quantify
biotic change, vulnerability, and resilience to
climatic shifts of the late Quaternary, as well
as those in recent history.

Ancient warm periods and
biodiversity consequences

Earth has both globally and locally experienced
conditions warmer than the 20th century
during the Quaternary and the Tertiary (10),
providing numerous glimpses ofwhat awarm-
er world looks like ecologically (27). Although
not direct analogs for an enhanced-greenhouse
future, because of different processes in the
climate system (17), these ancientwarmperiods
provide an empirical basis for identifying and
understanding ecological and biogeographical
implications of a warmer world, at spatiotem-
poral scales and levels of biological complexity
that cannot be captured through deliberate ex-
periments or direct monitoring.
Late Quaternary intervals comparable with

near-future climate projections include the
Holocene Thermal Maximum (HTM) between
12,000 and 5,000 years B.P. (before the present)
(28, 29), in which surface-temperature anom-
alies relative to preindustrial climates were
in some regions +3°C or more (Fig. 1), and
the earliest millennia of the LIG (129,000 to
111,000 years B.P.), when the global mean tem-
perature anomalywas >1°C above preindustrial
conditions (10). Summer warming was prom-
inent in Northern Hemisphere continental in-
teriors during these periods; by contrast, ocean
warming was comparatively small (Fig. 1).
Deeper-time warm intervals include the Early
Eocene (~50 million years ago) and the Mid-
Pliocene (3.3 million to 3.0 million years ago),
when atmospheric CO2 concentrations were
greater or comparablewith that of the present;
mean annual surface temperatures were >10°C
(EarlyEocene) and~3°Cwarmer (Mid-Pliocene)
than preindustrial temperatures (10).
During theHTM,warmer temperatures and

differentmoisture regimes led to climate-driven
movements of biome boundaries and eleva-
tional shifts inmontane vegetation belts. For
example, the tundra-forest boundary shifted
~200 km northward in Central Siberia (30),
whereas the prairie-forest boundary on the
North American Great Plains shifted ~200 to
250 km eastward under increased aridity (31).
Montane treelines were lower than today on
islands in the Southern Ocean during HTM,
owing to drier conditions under higher tem-
peratures (29). In much of northern subtrop-
ical Africa, HTM climate was wetter (although

cooler) than today, largely because of higher
summer temperatures in the northern Sahara
(Fig. 1) leading monsoon rains to extend far-
ther north, allowingmany savanna plants (and
riparian and wetland animals) to extend their
ranges northward by ~400 to 500 km in what
is today a desert (32). In the Central Andes
(South America), warm and wet conditions
during the HTM resulted in plants moving
up to 1000 m downslope (33).

During the LIG, boreal forests extended
north into Greenland (34), whereas the Sahara
was largely occupied by savanna (35). In Europe,
warmer temperatures allowed the hippopota-
mus (Hippopotamus amphibius) to expand its
range as far north as Britain (36). The occurrence
of giant tortoise Hesperotestudo (Geochelone)
crassiscutata in the American Midwest in the
LIG implies temperatures above freezing through-
out the year (37). Mid-Pliocene warming
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Fig. 1. Similarity in temperatures between past warm periods and the near future. (A to C) Boreal
summer (JJA) land and sea-surface projected temperature changes from a preindustrial baseline for the
(A) LIG (~127,000 years B.P.), (B) mid-Holocene (~6000 years B.P.), and (C) 2030 under RCP 4.5. Black
areas in (A) and (B) represent locations with temperature anomalies that are congruent with (C). Boxes 1 to
4 show biotic responses inferred from paleo-archives (insets), with arrows pointing to the relevant time
periods. Paleo-archives include fossil bones (boxes 1 and 2) and pollen in sediment cores (boxes 3 and 4).
Triangles in box 1 indicate fossil sites. Paleoclimate simulations are detailed in appendix S1. [Image credits:
Susan Schmitz, Smithsonian, Vincent Gordano Photo, Wlad74, Anan Kwaewkhammul, Janelle Lugge,
JaySi, Northwestern, Real Window Creative, Natalia Golubnycha, Audrius Merfeldas]
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caused similar latitudinal displacements in
vegetation, including poleward contractions of
tundra, northward expansions of boreal forest,
and greening of the Sahara (38). Tundra-like
communities with dwarf-shrub species of
southern beech (Nothofagus beardmorensis)
occurred at high altitudes in Antarctica (39),
where today there is polar desert.
Well-documented geographic displacements

of species and biomes across the globe during
these past warm periods underscore the need
for species’ ability to shift their range bounda-
ries by hundreds to thousands of kilometers in
response to future warming. They also lead to
expectations that many species will respond
individualistically to future climatic changes,
resulting in communities and ecosystems with-
out modern analog (40). These mechanisms of
biodiversity and ecosystem change are unlikely
to differ, at least qualitatively, in the future (41).

Ecological ramifications of rapid warming

Between 21,000 and 18,000 years B.P., Earth
began to emerge from a glacial climate—with
low CO2 concentrations, lower sea levels, and
large land-based ice sheets—into theHolocene
interglacial (42). During the global warming of
the last deglaciation (LD; 20,000 to 10,000 years
B.P.), many terrestrial regions experienced tem-
perature increases of 4° to >10°C (Fig. 2). Some
were gradual, but others occurred during epi-
sodes that spanned decades to centuries (43).
In some regions, these rapid warmings were
up to half as large as the entire difference be-
tween glacial and modern conditions (44).
Greenland ice cores reveal rapid large-

magnitude warming events at 14,700 and
11,700 years B.P., with warming rates of ~10°C
spanning decades (43). These are similar to
rates forecast for Northern Hemisphere polar
regions under Representative Concentration
Pathway (RCP) 8.5 (Fig. 2). In Europe, regional
temperatures increased 3° to 5°C during the
rapid warming event 14,700 years B.P. (45). Al-
though regional climates over theNorthAtlantic
region and Europe reorganized quickly during
the LD warmings, signatures of these rapid
events are found globally at varying ampli-
tudes and lags, including in the tropics (Fig. 2).
In the southern hemisphere, more gradual
and less pronouncedwarming events occurred
during cold stadial periods in the northern
hemisphere (44).
Paleoclimate simulationssince21,000yearsB.P.

suggest that 39%of terrestrial Earth experienced
near-centennial climate shifts of similar mag-
nitude to those of regional-scale future forecasts
under RCP 8.5 (Fig. 3). These rapid temper-
ature changes occurred largely during the
LD (16). Zoogeographic regions (46) with the
largest overlap between past and future paces
of temperature change include Arctico-Siberian,
Eurasian, Amazonian, andNovozelandic (Fig.
3); many of these regions are rich in paleoeco-

logical records, providing natural laboratories
for better anticipating biotic responses to cli-
matic changes.
Past rapid warmings profoundly affected

biological diversity at multiple levels, includ-
ing genetic diversity, species abundances and
geographical ranges, community composition,
and ecosystem structure. In Eurasia, many
cold-adapted mammal species experienced
reductions in population size of 50 to 90%,
causing bottlenecks and consequent losses of
genetic diversity (47). Population decreases and
extirpations were widespread in Eurasia and
North America during the LD warming events,
with accompanying shifts in species distribu-
tions (including that of anatomically modern
humans) and reorganization of diversity pat-
terns (11). For example, in Eurasia, the saiga
antelope (Saiga tatarica) retracted its range,
surviving the 14,700 years B.P. warming event
in temporary cool refugia (48), whereas the
Arctic Fox (Alopex lagopus) was unable to track
habitat shifts associated with LD warming
events in mid-latitude Europe, leading to re-
gional extinction (49). In North America, spe-
cies evenness of small-mammal communities
decreased sharply in response to rapid warm-
ing, negatively affecting functional stability and
community persistence (50), and awidespread
and regionally abundant tree species (Picea
critchfieldii) went extinct (51).
These alterations in species distributions

and abundances radically changed the struc-
ture and function of ecosystems, influencing
the physical formation of habitats, geochem-
ical cycles, and primary productivity (18, 52).
For example, in Britain and Ireland, rapid
warming caused changes in plant-soil and
plant-plant interactions, resulting in above-
and belowground shifts in ecosystem compo-
sition and overall reductions in productivity
(19). Moreover, decreases in the ranges and
abundances of terrestrial megafauna reduced
their contribution to nutrient cycling and re-
distribution (52), with consequences for struc-
ture and function of ecosystems (53). Late-glacial
population decline of megaherbivores in the
North American interior reduced browsing
pressure on broadleaved trees, provoking a
rapid transition from coniferous forest to
mixed coniferous-deciduous forest, along with
a change in fire regime (18).
Geohistorical records of biotic responses to

rapid warming events of the LD indicate that
abrupt climate-driven changes in species dis-
tributions and numbers will be far reaching,
causing feedbacks on the climate system (such
as decreasing albedo and changes in evapo-
transpiration) that alter the pace of warming
(45), affectinghumanwell-being through changed
ecosystem health and services (54). Because
many LD warming events are similar in mag-
nitude and pace to 21st-century forecasts (Figs.
2 and 3), LD paleo-archives provide invaluable

“logbooks” for establishing how future global
warming is likely to redistribute terrestrial bio-
diversity and change ecosystem functioning.

Biotic responses to extreme climatic events

Conservationmanagement and planning deci-
sions are typically based on species, popula-
tions, or ecosystems in specific habitats and
locales, involving time horizons of seasons to
decades. Paleo-archives offer opportunities,
particularly in the mid- to late Holocene, to
identify processes underlying climate-change
responses at the taxonomic, spatial, and tem-
poral scales used by decision-makers. Genetic
and demographic studies of extant populations
can often be tied seamlessly to late Holocene
records of population and biogeographic dy-
namics accompanied by independent paleo-
climate records.
Holocene paleoclimate reconstructions show

that extreme climate anomalies are often clus-
tered, resulting in periods of drought or high
temperatures, with variable durations, return
frequencies, and magnitudes (55). These epi-
sodic climatic events govern rates and pat-
terns of range expansion and contraction (12).
Studies of tree populations, for example, reveal
the importance of nonstationary Holocene
climate variability and its interactions with
long-distance dispersal, local demographic pro-
cesses, and species life-history traits (56–59).
Moreover, Holocene records show that popu-
lation expansions and declines are not neces-
sarily accompanied by changes in geographic
distribution (60, 61), as is often assumed in con-
servation assessments (62). For example, a rapid
population increase of eastern hemlock (Tsuga
canadensis) near its western range margin was
not accompanied by geographic expansion (60),
whereas its geographic distribution held steady
during a dramatic range-wide population de-
cline (61). The latter example represents a rapid
ecosystem transformation, in which a dominant
conifer (hemlock) was replaced by deciduous
trees and pines, forming forests with different
structural and functional properties, in re-
sponse to a contingent series of climatic and
ecological processes operating at different tem-
poral and spatial scales (61, 63).
As threats of ecosystem transformations in-

crease in response to current global warming
(64), Holocene records offer opportunities to
better understand the mechanisms that un-
derlie these transformations. For example,
paleoecological studies confirm that conifer-
ous forest stands can be transformed by a
single severe climate-driven fire event (65), a
phenomenon that appears to be under way in
parts of western North America (66).

Strengthening conservation policies
and strategies

As anthropogenic climate change accelerates,
the value of knowledge on past responses will
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depend on developing harmonized metrics
that can be used reliably and consistently to
quantify both past and recent trends in extir-
pation and extinction rates, community com-
position, and ecosystem structure and function
(Fig. 4). In the modern context, ecologists have
proposed classes of “essential biodiversity var-

iables” (EBVs) for measuring biodiversity change
and deriving conservation policies (26). How-
ever, to date, their temporal reach has been
limited to a few decades (67).
Paleo-archives provide opportunities to es-

timate EBVs under a far wider range of shifts
in climatic and environmental conditions, in-

cluding variables measured at the popula-
tion, species, community, and ecosystem levels
(Fig. 4). The application of paleo-archives to a
subset of EBVs (paleo-enabled EBVs) makes
the direct translation of past biodiversity re-
sponses to future environmental management
more straightforward because EBVs comprise
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a multimodel averaged forecast of annual-mean temperature change for 2080 from a baseline focused on 1990 (16) under two radiative-forcing scenarios for sites in (A) to (E). The
y axis scale differs in (A) to (F). The x axis shows time before the present in thousands of years. Details of paleoclimate reconstructions in (A) to (E) are provided in appendix S1.
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a common currency for estimating and discuss-
ing biodiversity change among the scientific
and policy communities (67).

Species distributions and abundances

Species’ abundance is an EBV that can be in-
ferred from fossil records (morphological, mo-
lecular, or both) by using count data or from
genes in extant populations by using coalescent
estimates of effective population size (Fig. 4).
Probabilistic and bias-correction methods can
be used to account for inconsistencies in radio-
metric dating, sampling rates, fossil preservation,
and taphonomy (25, 68), making inferences of
biotic change from paleo data more compa-
rable with the abundance-based indicators of
biodiversity change used today in conserva-
tion policy [Living Planet Index, International
Union for Conservation of Nature (IUCN) Red
List, and IUCN Green List], and assessment of
biodiversity targets [Convention on Biological
Diversity (CBD)]used in the faceof anthropogenic
climate and environmental change (69).
Because warning signals of biotic transitions

or state shifts are commonly identified by using
time-series abundance data (70), paleo-archives
provide opportunities to test conservation cri-
teria and model efficacy, improving knowledge
of critical thresholds for population collapses,

possible extinction events, and ecosystem shifts
(71). Moreover, a longer-term perspective en-
ables natural variability bounds in species
abundances and other conservation-relevant
variables to be estimated over large-scale cli-
matic shifts, often in settingswhere therewere
no substantial direct or indirect human im-
pacts to confound the signal. In this way, paleo-
archives allow thresholds of natural variability
to be identified and integrated into threat-
classification metrics to ensure that declines
from greenhouse gas warming and other
human-environment interactions are being pri-
oritized (72).
Change in spatial distributions of species is

another paleo-enabled EBV that can be in-
ferred from the fossil record with ecological
models and used to monitor single or aggre-
gated taxonomic units under late Quaternary
climate change, allowing improved understand-
ing of natural distributions for recovery assess-
ments and the role that climate had in past
range contractions and expansions (Fig. 4,
Muskox; Ovibos moschatus). Furthermore,
paleo-enabled conservation variables allow
morphological changes within species popula-
tions to be measured across time (Fig. 4) (22),
providing a deeper understanding of species-
level responses to climate change (73) and im-

proved capacity to detect ecological regime
shifts (74).
Assessments of biodiversity values are strong-

ly dependent on the spatial and temporal scale
of their evaluation, which in turn influences
conservation-planning decisions (22). The com-
mon method of using the historic record after
1500 CE as a baseline for vulnerability assess-
ments (8) can overlook long-term trends in
species ranges, population size, and genetic
diversity (Fig. 4) (72). This can directly affect
evaluations of conservation status (IUCN Red
List) and measures of conservation success
(IUCNGreen List) (75). Although paleo-archives
can address this shortfall, a challenge will be
to develop and apply long-term comparative
frameworks to biological signals preserved in
paleo-archives for local and range-wide extinc-
tions of related species and subspecies.
Paleo-archives are now being integrated

into ecological and evolutionarymodels to im-
prove theories and make generalizations re-
garding the spatial dynamics of range collapses
of species (13). For example, a common view
in conservation is that densities in peripheral
populations are typically lower and less stable
than at the center of a species’ range (62),
which has led to the widely adopted goal of
avoiding the range periphery in conservation
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strategies. However, if applied indiscriminate-
ly, this could result in extinctions of species
whose persistencemay depend on populations
close to the periphery of their historical ranges
(according to paleo-archives) (76). Inferences
of range shifts during the late Quaternary offer
distinct opportunities to develop an improved
theory of population declines, allowing direct
tests of the respective circumstances under
which geographic ranges collapse first along
the periphery or in the range interior.

Communities and ecosystems

The paleoecological record provides a wealth
of data documenting properties of past com-
munities and ecosystems and how they have
changed at local to regional scales during the
late Quaternary (33, 54, 77). Environmental
DNA can (alongside fossils) document tempo-
ral dynamics of communities and ecosystems
across hundreds to many thousands of years,
helping to assess the resilience of ecosystem
services to climate variation and change (78).
Community reconstructions of taxonomic rich-

ness and evenness for plants and animals using
paleo-archives (Fig. 4) can be used to calculate
“biodiversity intactness” (79) and thus guide
policies for reducing future biodiversity loss
(69). This is done by quantifying change in
the diversity of a wide assortment of organ-
isms within a given geographical area after a
climatic shift or other environmental distur-
bance. Furthermore, paleo-data can give insight
into the relative roles of biotic and abiotic
controls on ecosystem properties, including
nutrient cycling (19), net primary productivity,
and plant biomass (Fig. 4) over periods of
stability and disturbance. These paleo-enabled
measures of ecosystem function can reveal
thresholds for ecosystem collapse and inform
recent protocols for assessing ecosystem-level
threat status under climate change (80).

Processes regulating climate-biodiversity dynamics

The challenge of synthesizing disparate evi-
dence from paleo-archives—to assess threats
to species and ecosystems from climatic change,
and potential consequences of their loss—is

being addressed by using process-based (theory-
and data-driven) simulation models. These
approaches, which run at fine temporal and
spatial scales and across large geographical ex-
tents, open windows into climate-biodiversity
dynamics during the late Quaternary (81). By
directly capturing spatiotemporal variations
in biodiversity at biologically relevant spatio-
temporal scales, simulation models provide
improved ways to establish ecological base-
lines and to understand long-term ecological
and evolutionary responses to climatic shifts
and anthropogenic activities (82). They can be
used to disentangle multiple drivers of bio-
diversity change and infer causality, making
them particularly suited to guide decisions re-
garding the pace of change and desired states
of ecological systems.
These process-based simulation models are

increasingly useful for assessing the relative
importance of ecological and evolutionary re-
sponses to different spatiotemporal scales of
past climatic and environmental change in shap-
ing different levels of biological organization.
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Driver-state relationships that can now be sim-
ulated include effects of climatic change on
migration, adaptation, extinction, and specia-
tion (Fig. 5). However, the number and combi-
nation of processes simulated depends on the
spatial scale and unit of biological organization
being modeled (Fig. 5). Such simulations—
which unpack complex patterns of biodiversity,
driven by multiple biological processes and
agents—enable biotic responses to environ-
mental change to be better contextualized and
integrated into future biodiversity manage-
ment (13).
Process-based models also permit in silico

experiments on the biological consequences of
rates of past climatic and environmental changes,
allowing counterfactual hypotheses of eco-
evolutionary dynamics to be tested (82). Model
parameters can be held constant to understand
the isolated or interacting effects of other dy-
namical processes on emergent patterns (81).
Detailed scenario comparisons have been used
to investigate competing explanations for eco-

logical regime shifts in the Holocene (83), mi-
grationpatterns of anatomicallymodernhumans
since the LIG (84), and extirpation patterns
during the Pleistocene-Holocene transition (85).
Pattern-orientated modeling (POM) of com-

plex paleoecological systems is emerging as a
powerful tool (82). Spatiotemporal patterns in-
ferred from the paleo-record are used as filters
for evaluating whether a model is adequate in
its structure and parameterization to simulate
the underlying mechanisms. A requirement of
POM is that its state variables are expressed in
equivalent units to target variables inferred (or
measured directly) from paleo-archives. Using
paleo-enabled EBVs as targets in POM analysis
improves the realism of selected models (those
with sufficient structural complexity and ade-
quate parameterization) for conservation man-
agement and forecasting.

Looking ahead

Climatologists are taking full advantage of the
long-term history of the planet as recorded in

paleo-archives to understand mechanisms of
long-term climate forcing, quantify trends, and
develop scenarios of future climate change (86).
A wider usage of paleo-archives for quantifying
and reporting climate-biodiversity dynamics,
particularly in regions where past and future
climate change is likely to be similar (Fig. 3),
requires an expansion of the taxonomic, spa-
tial, and temporal extent of current paleo-
archives. Community-scale genome sequencing
of biological remains that are preserved in the
permafrost, ice-cores,marine and lake deposits,
and coprolites provides solutions for increasing
the taxonomic coverage of paleo-samples, often
improving knowledge of the geographical dis-
tribution of species and ecological communi-
ties (87). These inferenceswill be strengthened
through robust knowledge of postmortem pro-
cesses of fossilization (25). An expansion of paleo-
ecological information in open-access global
databases (88), includinggeo-referenced species-
and community-level ancient DNA data, will
further increase the geographical representation
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and temporal coverage of paleo-enabled conser-
vation metrics.
Methods for extending the temporal cover-

age of past climate-biodiversity dynamics be-
yond the ~50,000-year age-limit of radiocarbon
dating include uranium-thorium dating, opti-
cally stimulated luminescence, paleo-magnetism,
and infrared stimulated luminescence. How-
ever, dates for climatic and biotic events de-
rived from these approaches are generally not
resolved at human-relevant time scales (owing
to dating limitations and uncertainty), limit-
ing the assignment of ecological shifts to rapid
climatic changes during periods earlier than
~30,000 years ago. Tephra layers from volca-
nic activity, preserved in ice and sediment,
have the potential to align paleoenvironmental
proxies in space and time for the LD and
earlier, making them particularly useful for
interpreting biodiversity and ecosystem re-
sponses to regional climatic change (89).
Individual paleoclimate proxies only ap-

proximate broader-scale changes in clima-
tic conditions (42); hence, a more thorough
understanding of the paleoecology of species
and their ecosystems will result from higher
spatiotemporal-resolution paleoclimate pro-
jections from earth-systems models that use
continuous simulations of the transient cli-
mate from the LIG to present (90). Including
improved reconstructions of solar variability,
volcanic eruptions, and land-use during the
Holocene in these transient simulations will
provide a more complete picture of temporal
change in regional climates over this period.
Although modern DNA sequencing tech-

nologies can generate genetic-based estimates
of population change (such as through nuclear
single-nucleotide polymorphisms and mito-
chondrial markers) and adaptive potential
to climate change (allelic diversity) (91), they
have been primarily applied to contemporary
or 20th-century samples (92). Genomic infor-
mation extracted from well-preserved fossils
is now permitting changes in genetic diversity
to be estimated across extended time periods
(back at least to the LD) (93), informing re-
search on climate change susceptibility and
providing preindustrial baseline genomic in-
formation for conservation programs, includ-
ing genetic rescue. Aligning population-level
genomic information on inbreeding and con-
nectivity from ancient samples (94) with paleo-
environmental proxies presents opportunities
to infer magnitudes and rates of change in
genetic-based conservation metrics under cli-
mate change. Advances that allow changes in
allelic diversity to be uncovered from ancient
genomes could provide an additional class of
paleo-enabled EBV (“genetic composition”) rele-
vant to assessing climate-sensitivity and threat
status of different taxa.
Decreasing costs of recovering genomic-

scale endogenous DNA from fossils are facilita-

ting the compilation of more robust and tax-
onomically diverse data sets (95). This will
likely improve understanding of how gene
function and gene expression regulate the
abilities and speeds at which in situ popula-
tions evolve under different rates and magni-
tudes of climate change, making the inclusion
of genomic adaptation in conservation schemes
and metrics more feasible (91). Indirect paleo-
genomic evidence suggests a strong potential
for fast genomic adaptation to rapid climate
change (96). However, the generality of these
findings (and their potential relevance to rapid
warming events) is unknown, given that they
are based on a single taxon and small sam-
ple sizes.
Simulation and advanced empirical ap-

proaches that compare mechanisms of change
in nearby regions with different histories of
human colonization and land use are likely
to further improve knowledge of the syner-
gistic roles of humans and climate in the dis-
tributions of taxonomically diverse organisms
and communities in space and time. Human-
induced landscape transformation on the hun-
dreds of islands in East Polynesia, and potentially
Madagascar, did not occur with any severity
until within the past millennium (97, 98). De-
tailed comparisons of long-term biodiversity
and ecosystem change on these islands, in com-
parison and contrast with those on islands of
comparable size that have longer human his-
tories (such as Fiji, Cuba, and Tasmania), could
prove enlightening.
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Using the past to inform the future
The late Quaternary paleorecord, within the past #130,000 years, can help to inform present-day management of the
Earth's ecosystems and biota under climate change. Fordham et al. review when and where rapid climate transitions
can be found in the paleoclimate record. They show how such events in Earth's history can shape our understanding
of the consequences of future global warming, including rates of biodiversity loss, changes in ecosystem structure
and function, and degradation in the goods and services that these ecosystems provide to humanity. They also
highlight how recent developments at the intersection of paleoecology, paleoclimatology, and macroecology can
provide opportunities to anticipate and manage the responses of species and ecosystems to changing climates in the
Anthropocene.
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